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Abstract
To clear up both algebraic and geometric structures for integrable systems
derived from self-consistent field theory, in particular, a geometrical aspect
of the random phase approximation (RPA) equation is presented from the
viewpoint of symmetry of the evolution equation. The RPA equation for
an infinite-dimensional Grassmannian is constructed. It gives us a simple
geometrical interpretation that the collective submanifold is a rotator on a
curved surface.

PACS numbers: 05.30.Fk, 03.65.−w, 21.60.Jz, 02.20.−a

1. Introduction

The usual standard description of fermion many-body systems starts with the most basic
approximation founded on the independent-particle picture, the self-consistent field (SCF) for
motions of fermions. Hartree–Fock (HF) theory is one such approximation for ground states.
Excited states are treated with the well-known random phase approximation (RPA) if only a
small fluctuation in a time-dependent HF (TDHF) mean field is taken into account around a
stationary HF ground-state solution [2]. The TDHF equation is a nonlinear equation owing to
its SCF character and has no unique solution. Particle–hole pair operators of fermions with n
single-particle states are closed under a Lie multiplication and form a basis of Lie algebra un

[3]. The un Lie algebra generates a canonical transformation to a Slater determinant (S-det),
the Thouless transformation [4], which induces a representation of the corresponding U(n)

group. It gives the U(n) (HF) wavefunction of the independent-particle approximation. It
also provides an exact generator coordinate representation of fermion state vectors in which
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the generating wavefunction is an independent-particle wavefunction. The RPA is a standard
method to describe collective excitations and has been successful in explaining fermion systems
with small quantum fluctuations.

In a recent series of papers [5–7], we have studied the relation between the TDHF theory
[8] and the τ -functional method in soliton theory [9]. To go beyond a perturbative method with
respect to periodic collective variables [10], we have aimed at constructing the SCF theory,
i.e., the TDHF theory on the associative affine Kac–Moody algebra along the soliton theory
on the infinite-dimensional fermions. They are introduced through the Laurent expansion of
the finite-dimensional fermion operators with respect to degrees of freedom of the fermions
related to the mean-field potential. We have attempted to embed the HF un Lie algebra into
an infinite-dimensional Lie algebra gl∞ with the aid of the Laurent expansion of the fermion
operators with respect to the parameter z. Thus, the TDHF equation on the finite-dimensional
Grassmannian Grm (m : number of hole states) is embedded into the infinite-dimensional
Grassmannian. We have given an expression for the TDHF theory on the τ -functional space.
We have also shown that the TDHF equation on an infinite-dimensional fermion Fock space
F∞ under level one is nothing other than the Laurent expansion of the TDHF equation on
the Grm. The construction of the TDHF equation on F∞ presents us explicit algebraic
structures as a gauge theory inherent in SCF theory. From these facts, the SCF theory can
be regarded as a method to determine self-consistently both quasi-particle energies and boson
energies of collective motions which are unified into a gauge phase. Thus, we could obtain a
common language, the infinite-dimensional Grassmannian and the Lie algebra together with
the associative affine Kac–Moody algebra. They play important roles and become useful tools
to discuss a relation between SCF theory and soliton theory on a group manifold.

The purpose of this paper is to give a geometrical aspect of the RPA equation [11, 12]
and an explicit expression for the RPA equation with a normal mode on infinite-dimensional
fermion Fock space F∞, to clear up algebraic and geometric structures for integrable systems
derived from SCF theory. We also discuss the relation between a loop collective path and
a formal RPA equation. Consequently, it can be proved that the usual perturbative method
with respect to periodic collective variables η and η∗ in TDHF theory [10] is involved in the
present method which aims to construct TDHF theory on the associative affine Kac–Moody
algebra. It turns out that the collective submanifold is exactly a rotator on a curved surface
in the infinite-dimensional Grassmannian. If we could arrive successfully at our final goal of
clarifying the relation between SCF theory and soliton theory on a group, the present work
may give us important clues for the description of large-amplitude collective motions in nuclei
and molecules and for construction of multi-dimensional soliton equations [13, 14] since the
collective motions usually occur in multi-dimensional loop space. In section 2, we show a
simple geometrical aspect of the RPA equation. It is just a natural extension of the usual RPA
equation of small amplitude around the ground state to any point on a collective submanifold
which should be extracted. In section 3, a formal RPA equation is constructed on an infinite-
dimensional Fock space F∞. Finally, we will give a summary and some concluding remarks.
In the appendices, we will reconstruct a particle–hole subgroup on F∞ and embed an SCF
Hamiltonian into F∞.

2. Geometrical aspect of the RPA equation

Following [12], we first recapitulate the fundamental idea in the previous series of papers [11]
for extraction of a collective submanifold out of a fully parametrized SCF group manifold.
We study here only the case of TDHF theory. In viewing symmetries of time-evolution
equations, let us consider an abstract evolution equation ∂tu(t) = K(u(t)) for a function
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u depending only on time t. Suppose that there exists a certain transformation which
converts a solution for u to another solution. Introducing a parameter s different from t
to specify such a solution, we assume another kind of evolution equation with respect to s, i.e.,
∂su(t, s) = K{u(t, s)}. Then, an integrability condition for existence of the transformation is
given by ∂sK{u(t, s)} = ∂tK{u(t, s)}.

The method of maximal decoupling [10], in which the invariance principle of the
Schrödinger equation and canonicity condition play crucial roles, can be regarded as an
extension of such a transformation to another transformation which is dependent on multiple
group parameters of Lie groups of systems. In particular, the canonicity condition demands that
collective variables η and η∗ in TDHF must constitute an orthogonal coordinate system. To this
transformation, we can give the following interpretation: based on the invariance principle and
canonicity condition, transformation groups for truncating a collective submanifold of time and
collective variables mean that the group parameters should constitute an orthogonal coordinate
system. They, however, have not been used explicitly so as to manifest the importance of the
integrability condition with respect to t and s.

In a differential geometrical approach to nonlinear problems, each of the integrability
conditions is transcribed into zero curvature of the connection on the corresponding Lie groups
of each system. Nonlinear evolution equations, e.g., soliton equations such as the KdV, KP,
sine/sinh-Gordon equations, originate from the well-known Lax equation [15] which arises as
zero curvature of the connection [16]. These soliton equations appear as Lie-algebra-valued
evolution equations for tangent vector fields of local gauge fields depending on time t and
space x coordinates. In contrast, in the ordinary TDHF SCF theory, the corresponding Lie
groups are unitary groups which transform an orthonormal base of a system and are dependent
on t but not on x.

Our basic idea lies in the introduction of a sort of Lagrange approach familiar to fluid
dynamics to describe a collective coordinate system. This approach enables us to adopt a
1-form � which is linearly composed of a TDHF Hamiltonian and infinitesimal generators
induced by collective-variable differentials of a canonical transformation U(n). The curvature

C of the system is defined as C
d= d�−�∧� and the integrability condition reads C = 0. This

condition expressed in the quasi-particle frame (QPF) is nothing but the formal RPA equation
imposed by weak orthogonal conditions among the infinitesimal generators, i.e., an equation
for tangent vector fields with respect to the collective variables on the group submanifold.
Comparing with a theory for the local gauge fields, in our theory it must be noted that the
degrees of freedom of the collective variables are involved in parameter space of the group
manifold, which is quite different from an ordinary group manifold defined in a functional
space of coordinate x and also time t. Overcoming this crucial difference, could we obtain
a unified theoretical frame of an integrable system both in the SCF method and the soliton
theory? If it is achieved, the present work becomes a powerful approach to a prescription for
giving an answer to such an exciting problem.

Relative vector fields made of an SCF Hamiltonian around each point on any integral
curves also constitute solutions for a formal RPA equation around the same point, which
is in turn a fixed point in a QPF. This means that the formal RPA equation is a natural
extension of the usual RPA equation for small-amplitude quantal fluctuations around a ground
state to that at any point on a collective submanifold to be studied from now on. As an
illustration of our theory, we show a simple geometrical aspect of the formal RPA equation (see
figure 1).

In figure 1, the picture of solutions of the formal RPA equation is given with the help
of a geometrical optics-like image on a curved surface on which the axis of time and that of
collective-variable space are exchanged with each other. Suppose that there exist a coordinate
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Figure 1. Formal RPA on the collective submanifold. G: a fixed point denoting a ground state and
a usual RPA orbit; P: a fixed point and a formal RPA orbit on a moving frame; curves AA, BB:
integral curves (big wave fronts); curves aa, bb, cc: collective coordinate (η).

system formed by a single pair of collective variables (η, η�) and a time t. The integral curves
made of the SCF Hamiltonian draw big wave fronts. The trajectories by the formal RPA
equation are drawn by small wave fronts occurring around a new fixed point which is on the
big wave fronts. The enveloping curves made of the small wave fronts correspond to another
big wave front. The time t carries one of group parameters for each point on each big wave
front and the variables η and η� cover other parameters of the group. If we put ourselves
on a moving frame, the equation becomes a fundamental equation describing tangent vector
fields fluctuating around us. It associates with the weak orthogonality conditions among
the generating operators and causes an evolution in the space of the collective variables.
Conversely speaking, the search for a solution of the equation leads us to a determination of
the submanifold on which we really stand. As a consequence, the problem of extracting a
certain collective submanifold out of the fully parametrized TDHF manifold may be reduced
to the search for the corresponding sphere on which exists the top of an arrow attached to
generators at a space around a fixed point. Then, it is interpreted that the formal RPA is just an
extension of the usual RPA form on a flat surface (linear) to that on a curved surface (nonlinear).
Furthermore, we note that the starting point selected by us on the moving frame becomes a
standard point (new fixed point). This fact presents a geometrical interpretation for symmetry
breaking and recovery. The former is brought as a choice of spontaneous symmetry breaking
and the latter causes the motion, which has already been running, owing to a recovery of the
symmetry. In other words, the equation of motion should be kept invariant if we select any
coordinates. Through such an observation, it turns out that the formal RPA equation becomes
an interesting illustration of a dynamical equation describing both the local and global SCF
characters, i.e., the tangent vector manifold and the group manifold. With a wider viewpoint
of the geometrical optics on curved manifolds, both local and global characters of the SCF
theory can be argued parallelly to the case of the formal RPA equation in a similar way. At the
same time the physical characteristics of the various Lie-algebra-valued operators are made
easy to understand at any point on those manifolds.

The geometrical optic-like image leads to the following interpretation: the integrability
condition (the formal RPA equation) is just the infinitesimal condition to transform a solution
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into another solution for the evolution equation under consideration. It is now easy to
understand that the usual treatment of the RPA equation for small amplitude around a ground-
state solution is nothing but a method of determining an infinitesimal transformation of
symmetry under the assumption that fluctuating fields are composed only of normal modes.
The case not satisfying such an assumption is exactly our main problem which is whether
the fluctuating fields relate to the soliton theory or not. We intend to search for a framework
suitable for approaching such a problem, which can simultaneously determine a certain fixed
point and the collective submanifold connecting to it in the fully parametrized TDHF manifold.
Then from this discussion, we may be convinced that it is natural for us to let the fixed point
be dependent on the collective variables.

3. Construction of formal RPA equation on F∞

Following [5, 6], we sketch briefly the TDHF method on F∞. For fermion operators of n
single-particle states in an almost time-periodic self-consistent mean-field potential with a
normal mode ωc, we introduce the infinite-dimensional fermion operators ψnr+α and ψ∗

nr+α

(α = 1, . . . , n, r ∈ Z), the normalized perfect vacuum {ψnr+α|Vac〉 = 0, 〈Vac|ψ∗
nr+α = 0

(r � −1); ψ∗
nr+α|Vac〉 = 0, 〈Vac|ψnr+α = 0(r � 0)} with 〈Vac|Vac〉 = 1 and the reference

vacuum {|m〉 = ψm · · · ψ1|Vac〉,m = 1, . . . , n} having 〈m|m〉 = 1. The normal-ordered pair

operators : ψnr+αψ∗
ns+β : (

d= ψnr+αψ∗
ns+β − δαβδrs(s < 0)) generate an affine Kac–Moody

algebra [17, 18]. We define the following ŝun(⊂ ŝln) Lie algebra:

Xγ = X̂γ + C · c, C
∗ = −C, (pure imaginary)

X̂γ = ∑N
r=−N

∑
s∈Z

(γr)αβ : ψn(s−r)+αψ∗
ns+β :, γ †

r = −γ−r , Tr(γr) = 0,

[Xγ , c] = 0, [Xγ ,Xγ ′ ] = X̂[γ,γ ′] + α(γ, γ ′) · c, c|m〉 = 1 · |m〉,

 (3.1)

←− h −→|←− p −→

γ =

↑

h

↓
↑
p

↓



. . .
. . .

γ−2 γ−1 γ0 γ1 γ2
. . .

γ−2 γ−1 γ0 γ1 γ2
. . .

. . . γ−2 γ−1 γ0 γ1 γ2

. . . γ−2 γ−1 γ0 γ1 γ2

. . .
. . .


,

α(γ, γ ′) = ∑N
r=−N rTr(γrγ

′−r ) = −1

2
Tr



. . .

−In

−In

In

In

. . .


[γ , γ ′],



(3.2)
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where c and In denote a centre and an n-dimensional unit matrix, respectively. The matrix γ

is divided into four blocks by specifying apparently occupied states h and unoccupied states
p for the perfect vacuum |Vac〉. Corresponding to this division, a matrix in the 2-cocycle α is
also divided into four blocks. The γ and γ ′ represent the off-diagonal parts of the matrices γ

and γ ′ as

γ
d=


γ2

. . .

γ1 γ2

γ−2 γ−1

. . . γ−2

 , γ ′ d=


γ ′

2

. . .

γ ′
1 γ ′

2
γ ′

−2 γ ′
−1

. . . γ ′
−2

 . (3.3)

Note the relation α∗(γ, γ ′) = −α(γ, γ ′) and properties γ † = −γ and γ ′† = −γ ′.
By a canonical transformation U(ĝ)(ĝ = eγ ), which satisfies the relations U−1(ĝ) =

U(ĝ−1) = U(ĝ†) and U(ĝĝ′) = U(ĝ)U(ĝ′) with ĝ†ĝ = ĝĝ† = I∞, the infinite-dimensional
fermion operators are transformed into the forms

ψnr+α(ĝ)
d= U(ĝ)ψnr+αU−1(ĝ) =

∑
s∈Z

ψn(r−s)+β(gs)βα, (3.4)

together with their Hermitian conjugate. Here I∞(=Î ) is an infinite-dimensional unit matrix
and

ĝnr+α,ns+β = (gs−r )αβ, ĝ
†
nr+α,ns+β = (

g
†
r−s

)
αβ

, (3.5)

δrsδαβ = (ĝĝ†)nr+α,ns+β =
∑
t∈Z

(
gtg

†
t+(r−s)

)
αβ

, (3.6)

together with the same relation for (ĝ†ĝ)nr+α,ns+β . Note that ĝ forms a periodic sequence with
period n and formally s and t run over a infinite set of Z.

The elements of the density matrix, corresponding to the formal Laurent expansion of the
usual one on the finite-dimensional Grassmannian Grm, can be defined as

(Wr)αβ
d=
∑
s∈Z

〈m|U(ĝ†) : ψn(s+r)+βψ∗
ns+α : U(ĝ)|m〉

=
∑
s∈Z

m∑
γ=1

(gs)αγ

(
g
†
s−r

)
γβ

. (3.7)

Following [5, 6], we can obtain the SCF Hamiltonian on F∞ as

HF∞;HF =
∑
k∈Z

∑
s∈Z

(Fr )αβ : ψn(s−r)+αψ∗
ns+β :,

(Fr )αβ
d= hαβδr,0 + [αβ|γ δ](Wr)δγ .

 (3.8)

Let us recapitulate briefly the previous main results [5, 6]. Assuming z = e−iωct (h̄ = 1) and

then using a covariant differential operator Dr
d= i∂t +rωc, one can express the TDHF equation
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for ĝ as

Dtĝ = F(ĝ)ĝ, Dt ĝ
d=



. . .
. . .

D−1g−1 D0g0 D1g1

D−1g−1 D0g0 D1g1

D−1g−1 D0g0 D1g1

. . .
. . .


,

F(ĝ)
d=



. . .
. . .

F−1 F0 F1

F−1 F0 F1

F−1 F0 F1

. . .
. . .


, ĝ

d=



. . .
. . .

g−1 g0 g1

g−1 g0 g1

g−1 g0 g1

. . .
. . .


.


(3.9)

Upon the introduction of
(
F c

r

)
αβ

(ĝ, ωc)
d= ωc

∑
s∈Z

s
(
gsg

†
s−r

)
αβ

, the matrix F c(ĝ, ωc) takes
the form

F c(ĝ, ωc) = ωc



. . .
. . .

−g−1 0 g1

−g−1 0 g1

−g−1 0 g1

. . .
. . .



×



. . .
. . .

g
†
1 g

†
0 g

†
−1

g
†
1 g

†
0 g

†
−1

g
†
1 g

†
0 g

†
−1

. . .
. . .


. (3.10)

Then, equation (3.9) transforms into

i∂t ĝ = Fp(ĝ)ĝ, Fp(ĝ)
d= F(ĝ) − F c(ĝ),(

Fp
r

)
αβ

d= (
Fr − F c

r

)
αβ

= hαβδr,0 + [αβ|γ δ](Wr)δγ − ωc

∑
s∈Z

s
(
gsg

†
s−r

)
αβ

,

}
(3.11)

introducing D̂t
d= i∂t + Hc

F∞;HF, which is recast into that on the state vector U(ĝ)|m〉 as

D̂tU(ĝ)|m〉 = HF∞;HFU(ĝ)|m〉, H c
F∞;HF

d= ∑
r,s∈Z

(
F c

r

)
αβ

: ψn(s−r)+αψ∗
ns+β :,

i∂tU(ĝ)|m〉 = H
p

F∞;HFU(ĝ)|m〉, H
p

F∞;HF
d= ∑

r,s∈Z

(
Fp

r

)
αβ

: ψn(s−r)+αψ∗
ns+β : .

 (3.12)

From now we will show how to embed the usual RPA equation on Grm into the F∞.
Suppose that ĝ and U(ĝ)|m〉 diagonalize Fp in H

p

F∞;HF and F c in Hc
F∞;HF, respectively. They

are determined spontaneously if conditions ĝ  ĝ0 e−iε̂ t and ∂t ĝ
0 = 0 are satisfied. Using
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(3.10), we have ωc(ĝ0) = F(ĝ0)ĝ0 − ĝ0ε̂ , where (ĝ0) is defined by

(ĝ0)
d=



. . .
. . .

−g0
−1 0 g0

1

−g0
−1 0 g0

1

−g0
−1 0 g0

1
. . .

. . .


, ε̂

d=



. . .

ε

ε

ε

. . .


.

(3.13)

The ε (ε αβ = εαδαβ) is a quasi-particle energy and g0
r is given by g0

r · zr ∝ e−i(ε+ωcrIn)t .
Thus, the quasi-particle energy ε and boson energy ωc are unified into a gauge phase. In the
usual static HF theory on the Grm, the term related to a collective motion in (3.13) cannot
evidently exist. Then, we must put ωc(ĝ0) = 0 and the ĝ0 should be composed from only
a block-diagonal g0

0 given by g0
0 = exp γ0 (γ0 ∈ sun; block-diagonal matrix of the γ (3.2)).

The usual RPA equation around the static solution is realized exactly by the approximation
made below

ĝ  ĝ0 ˆ̃g e−iε̂ t , ˆ̃g = exp



. . .
. . .

. . .

γ̃−1 0 γ̃1

γ̃−1 0 γ̃1

γ̃−1 0 γ̃1

. . .
. . .

. . .


, (3.14)

where ε̂ = ĝ0†F(ĝ0)ĝ0 and ∂t ĝ
0 = 0. The norm of γ̃ is very small, ‖γ̃ ‖ ≈ 0. Here we have

used the phase equivalence U(e−iε̂ t )|m〉 = e−i
∑m

α=1 εαt |m〉  |m〉, i.e., ĝ0 e−iε t  ĝ.
We are now at a stage to construct the formal RPA equation on F∞. Let ε and ε∗ be

parameters drawing a two-dimensional surface made of a continuous deformation of loop path
on the Grm. Put z = eiϕ and ϕ = −ωct and let the parameters to be independent on angle ϕ on
each loop, namely, γ = ∑N

r=−N γr(ε, ε
∗)zr and ∂γr

∂ϕ
= 0 for all r, as is shown later. Then, as a

whole we can identify ε and ε∗ with collective variables η and η∗ [5, 6]. A local representation
on the surface is nothing but the integrability condition which is expressed with the use of the
previous framework of formal RPA equation [11]. We put the following canonicity conditions
which guarantee the variables (ε, ε∗) to be an orthogonally canonical coordinate system
[8, 10, 6]:

〈ĝ|∂ε |ĝ〉 d= 〈m|U(ĝ†)∂εU(ĝ)|m〉 = 1
2ε∗,

〈ĝ|∂ε∗ |ĝ〉 d= 〈m|U(ĝ†)∂ε∗U(ĝ)|m〉 = − 1
2ε.

}
(3.15)

We define infinitesimal generators on the collective submanifold as follows:

Xθ †
d= i∂εU(ĝ) · U(ĝ)† = Xθ † + C(i∂εĝ · ĝ†), θ † d= i∂εĝ · ĝ†,

Xθ
d= i∂ε∗U(ĝ) · U(ĝ)† = Xθ + C(i∂ε∗ ĝ · ĝ†), θ

d= i∂ε∗ ĝ · ĝ†,

θ † =



. . .
. . .

θ
†
1 θ

†
0 θ

†
−1

θ
†
1 θ

†
0 θ

†
−1

θ
†
1 θ

†
0 θ

†
−1

. . .
. . .


, θ =



. . .
. . .

θ−1 θ0 θ1

θ−1 θ0 θ1

θ−1 θ0 θ1

. . .
. . .


,


(3.16)
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where terms C(· · ·) vanish as was proved in [5, 6]. From ∂ε∗ 〈ĝ|∂ε |ĝ〉 − ∂ε〈ĝ|∂ε∗ |ĝ〉, we obtain
the weak orthogonality condition

1 = 〈ĝ|[Xθ,Xθ † ]|ĝ〉

=
m∑

α=1

n∑
γ=1

∑
r∈Z

([θ, θ †]r )αγ (W−r )γ α − 1

2
T r

[−Î

Î

]
[θ̄ , θ̄ †], (3.17)

where we have used equations (3.1) and (3.7).
As discussed in [6], using the idea of Lax pairs [15] we can recast equations (3.9) and

(3.16), respectively, into

Dtĝ = F(ĝ)ĝ, ∂t ĝ
0 = 0, F(ĝ) = F(ĝ0),

i∂εĝ = θ †(ĝ)ĝ, θ †(ĝ) = θ †(ĝ0) + ĝ0(∂ε ε̂ )ĝ0† · t,

i∂ε∗ ĝ = θ(ĝ)ĝ, θ(ĝ) = θ(ĝ0) + ĝ0(∂ε∗ ε̂ )ĝ0† · t.

 (3.18)

Upon introduction of E = ∑m
α=1 εα(ε, ε∗), the canonity condition (3.15) transforms into

〈ĝ|∂ε |ĝ〉 = 〈ĝ0|∂ε |ĝ0〉 − i∂εE · t = 1
2ε∗ − i∂εE · t,

〈ĝ|∂ε∗ |ĝ〉 = 〈ĝ0|∂ε∗ |ĝ0〉 − i∂ε∗E · t = − 1
2ε − i∂ε∗E · t.

}
(3.19)

From equation (3.19), the weak orthogonality condition (3.17) is expressed as

1 = ∂ε∗ 〈ĝ|∂ε |ĝ〉 − ∂ε〈ĝ|∂ε∗ |ĝ〉
= ∂ε∗ 〈ĝ0|∂ε |ĝ0〉 − ∂ε〈ĝ0|∂ε∗ |ĝ0〉 = 〈ĝ0|[Xθ(ĝ0), Xθ †(ĝ0)]|ĝ0〉. (3.20)

To satisfy integrability conditions for ε, ε∗ and t, curvatures obtained from (3.18) should
vanish; that is,

Ct,ε
d= Dtθ

†(ĝ) − i∂εF(ĝ) + [θ †(ĝ),F(ĝ)] = 0,

Ct,ε∗
d= Dtθ(ĝ) − i∂ε∗F(ĝ) + [θ(ĝ),F(ĝ)] = 0,

Cε,ε∗
d= i∂εθ(ĝ) − i∂ε∗θ †(ĝ) + [θ(ĝ), θ †(ĝ)] = 0,

 (3.21)

and ∂t ĝ
0 = 0. Here, Dtθ and Dtθ

† are defined as

(Dtθ)r = Dr;t θr = (i∂t + rωc)θr , (Dtθ
†)r = Dr;t θ

†
−r = (i∂t + rωc)θ

†
−r . (3.22)

The expressions for the curvatures on the quasi-particle frame (QPF) are the same forms as
those of RPA equations in the finite Fock space [11]. As mentioned before, the TDHF equation
on the F∞ leads to the RPA equation if we take into account only a small fluctuation around
a stationary ground-state solution. The form of RPA equation on the QPF has a following
simple geometrical interpretation: relative vector fields made of the SCF Hamiltonian around
each point on loop paths also take the form of RPA equation around the same point which is
in turn a fixed point in the QPF. Thus, the curvature equation in the QPF is regarded as the
formal RPA equation on the infinite-dimensional Grassmannian. Using (3.4), the canonical
transformation for ĝ is given by

ψnr+α(ĝ) =
∑
s∈Z

n∑
β=1

ψn(r−s)+β

(
g0

s

)
βα

e−iεαt , (3.23)

together with its Hermitian conjugate. According to [11], equation (3.18) is rewritten on the
above QPF as

−Dtĝ
† = F(ĝ†)|qpf ĝ

†, F(ĝ†)|qpf
d= ĝ†F(ĝ)ĝ,

−i∂εĝ
† = θ †(ĝ†)|qpf ĝ

†, θ †(ĝ†)|qpf
d= ĝ†θ †(ĝ)ĝ,

−i∂ε∗ ĝ† = θ(ĝ†)|qpf ĝ
†, θ(ĝ†)|qpf

d= ĝ†θ(ĝ)ĝ,

 (3.24)
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θ †|qpf
d=



. . .
. . .

θ
†
1 θ

†
0 θ

†
−1

θ
†
1 θ

†
0 θ

†
−1

θ
†
1 θ

†
0 θ

†
−1

. . .
. . .


qpf

,

θ |qpf
d=



. . .
. . .

θ−1 θ0 θ1

θ−1 θ0 θ1

θ−1 θ0 θ1

. . .
. . .


qpf

. (3.25)

The subscript ‘qpf’ means the quasi-particle frame (QPF). For equation (3.21), we obtain also
another expression on this QPF as

(Dtθ
† − i∂εF − [θ †,F])|qpf = 0, (Dtθ − i∂ε∗F − [θ,F])|qpf = 0,

(i∂εθ − i∂ε∗θ † − [θ, θ †])|qpf = 0.

}
(3.26)

Further, using (3.24) and the relation i∂εF |qpf = i∂ε(ĝ
†F(ĝ)ĝ) = −[θ †,F]|qpf + ĝ†i∂εF ĝ, one

can rewrite equations in the first line of (3.26) as

Dtθ
†|qpf − ĝ†i∂εF(ĝ)ĝ = 0, Dtθ |qpf − ĝ†i∂ε∗F(ĝ)ĝ = 0. (3.27)

From equations (3.25) and (3.18), the infinitesimal operators are expressed as

θ †(ĝ†)|qpf = −i∂εĝ
† · ĝ = eiε̂ t {∂εε̂ · t + θ †(ĝ0†)|qpf} e−iε̂ t , (3.28)

together with the same relation for θ(ĝ†)|qpf . We have also θ †(ĝ0†)|qpf = −i∂εĝ
0† · ĝ0 and

θ(ĝ0†)|qpf = −i∂ε∗ ĝ0† · ĝ0. Then, from (3.27) we can derive the formal RPA equation on the
infinite-dimensional Grassmannian in the form

ωc{θ †(ĝ0†)|qpf} + i∂εε̂ − [ε̂ , θ †(ĝ0†)|qpf] − iĝ0†∂εF(ĝ0)ĝ0 = 0,

{θ †(ĝ0†)|qpf} d=



. . .
. . .

−θ
0†
1 0 θ

0†
−1

−θ
0†
1 0 θ

0†
−1

−θ
0†
1 0 θ

0†
−1

. . .
. . .


qpf

,


(3.29)

and h.c. We had attempted to solve the formal RPA equation on an SO(2n) group by means
of the Taylor expansion with respect to the collective variables [11]. We, however, had not
become aware of equation (3.29) on the infinite-dimensional Lie algebra. To obtain an explicit
expression for the last term of the lhs of the first line in (3.29), we introduce an auxiliary
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density matrix R̂ = ĝ0̂Im⊗(n−m)ĝ
0†, where

Îm⊗(n−m)
d=



. . .

Im⊗(n−m)

Im⊗(n−m)

Im⊗(n−m)

. . .


, Im⊗(n−m)

d=
[−Im

In−m

]
.

(3.30)

Then, using equation (3.5) the auxiliary density matrix R̂ is expressed as

R̂ =



. . .
. . .

R−1 R0 R1

R−1 R0 R1

R−1 R0 R1

. . .
. . .


, Rr

d=
∑
s∈Z

g0
s Im⊗(n−m)g

0†
s−r . (3.31)

Let us recall that Î is the infinite-dimensional unit matrix. Then, the R̂ is related to the density
matrix Ŵ as R̂ = Î − 2Ŵ where

Ŵ = W(ĝ)
d=



. . .
. . .

W−1 W0 W1

W−1 W0 W1

W−1 W0 W1

. . .
. . .


. (3.32)

Then, we obtain

i∂εŴ = − 1
2 ĝ0{−i∂εĝ

0† · ĝ0̂Im⊗(n−m) − Îm⊗(n−m)(−i∂εĝ
0† · ĝ0)}ĝ0†

= − 1
2 ĝ0[θ †(ĝ0†)|qpf, Îm⊗(n−m)]ĝ

0†, (3.33)

and h.c. In the above, we have used equations (3.28) and (3.31). Further, we introduce the
following quantities:

θ
0†
r

∣∣
qpf

d=
[
ξ 0
r φ0

r

ψ0
r ξ̄ 0

r

]
, B

†
r

∣∣
qpf

d= −1

2

[
θ

0†
r

∣∣
qpf, Im⊗(n−m)

] =
[

0 −φ0
r

ψ0
r 0

]
,

B̂†|qpf =



. . .
. . .

B
†
1 B

†
0 B

†
−1

B
†
1 B

†
0 B

†
−1

B
†
1 B

†
0 B

†
−1

. . .
. . .


qpf

,



(3.34)

and h.c. Using these, we rewrite equation (3.33) as

i∂εŴ = ĝ0B̂†∣∣
qpf ĝ

0† = ∑
r∈Z

(i∂εWr)z
r ,

i∂εWr = ∑
k,l∈Z

g0
kB

†
k−l−r

∣∣
qpfg

0
l
† = ∑

k,l∈Z
g0

k

[
0 −φ0

k−l−r

ψ0
k−l−r 0

]
g0

l
†,

 (3.35)

and h.c.
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Let a(ā) and i(ī) be 1, . . . , m hole states and m + 1, . . . , n particle states of the QPF,
respectively. Substituting the second equation of (3.35) into (3.8), for r �= 0 we get

i∂ε(Fr )αβ = [αβ|γ δ]
∑
k,l∈Z

{(
g0

k

)
δi

(
g0

l
†)

aγ

(
ψ0

k−l−r

)
ia

− (
g0

k

)
δa

(
g0

l
†)

iγ

(
φ0

k−l−r

)
ai

}
. (3.36)

Thus, we can reach to the desired form of the equation, part of the formal RPA equation on
the infinite-dimensional Grassmannian (3.29),

i(ĝ0† · ∂εF · ĝ0)r =
∑
k,l∈Z

g0
k
† · i∂εFk−l+r · g0

l

= ∑
k,l∈Z,k̄,l̄∈Z

×


[
kl

ab
|F | k̄l̄

īā

] (
ψ0

(k̄−l̄)−(k−l)−r

)
īā

−
[
kl

ab
|F | k̄l̄

āī

] (
φ0

(k̄−l̄)−(k−l)−r

)
āī

,[
kl

ia
|D| k̄l̄

īā

] (
ψ0

(k̄−l̄)−(k−l)−r

)
īā

−
[
kl

ia
|D| k̄l̄

āī

] (
φ0

(k̄−l̄)−(k−l)−r

)
āī

,[
kl

ai
|D| k̄l̄

īā

] (
ψ0

(k̄−l̄)−(k−l)−r

)
īā

−
[
kl

ai
|D| k̄l̄

āī

] (
φ0

(k̄−l̄)−(k−l)−r

)
āī[

kl

ij
|F | k̄l̄

īā

] (
ψ0

(k̄−l̄)−(k−l)−r

)
īā

−
[
kl

ij
|F | k̄l̄

āī

] (
φ0

(k̄−l̄)−(k−l)−r

)
āī

.

(3.37)

Substituting the above result into (3.29), we can derive the formal RPA equation on F∞.
Various types of the above matrix elements are expressed in the following forms:

[
kl

ab
|F | k̄l̄

īā

]
d= (

g0
k
†)

aα

(
g0

l

)
βb

[αβ|γ δ]
(
g0

k̄

)
δī

(
g0

l̄
†)

āγ
,[

kl

ab
|F | k̄l̄

āī

]
d= (

g0
k
†)

aα

(
g0

l

)
βb

[αβ|γ δ]
(
g0

k̄

)
δā

(
g0

l̄
†)

īγ
,

[
kl

ij
|F |. k̄l̄

īā

]
d= (

g0
k
†)

iα

(
g0

l

)
βj

[αβ|γ δ]
(
g0

k̄

)
δī

(
g0

l̄
†)

āγ
,[

kl

ij
|F | k̄l̄

āī

]
d= (

g0
k
†)

iα

(
g0

l

)
βj

[αβ|γ δ]
(
g0

k̄

)
δā

(
g0

l̄
†)

īγ
,

[
kl

ia
|D| k̄l̄

īā

]
d= (

g0
k
†)

iα

(
g0

l

)
βa

[αβ|γ δ]
(
g0

k̄

)
δī

(
g0

l̄

)
āγ

,[
kl

ia
|D| k̄l̄

āī

]
d= (

g0
k
†)

iα

(
g0

l

)
βa

[αβ|γ δ]
(
g0

k̄

)
δā

(
g0

l̄

)
īγ

,
[
kl

ai
|D| k̄l̄

īā

]
d= (

g0
k
†)

aα

(
g0

l

)
βi

[αβ|γ δ]
(
g0

k̄

)
δī

(
g0

l̄

)
āγ

,[
kl

ai
|D| k̄l̄

āī

]
d= (

g0
k
†)

aα

(
g0

l

)
βi

[αβ|γ δ]
(
g0

k̄

)
δā

(
g0

l̄

)
īγ

.



(3.38)

Finally, we summarize equations to determine the collective submanifold and motion in
the following forms:

The canonicity condition (3.15):

〈ĝ0|∂( ε
ε∗ )|ĝ0〉 =

m∑
α=1

∑
s∈Z

(
g0

s
†∂( ε

ε∗ )g
0
s

)
αα

= 1

2

(
ε∗

−ε

)
. (3.39)
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The formal RPA equation (3.29):

ωc{θ †(ĝ0†)|qpf} + i∂εε̂ − [ε̂ , θ †(ĝ0†)|qpf] − iĝ0†∂εF(ĝ0)ĝ0 = 0,

ĝ = ĝ0(ε, ε∗) e−iε̂ (ε,ε∗)t .

}
(3.40)

Through constructions of the TDHF theory and the formal RPA equation on F∞, the following
becomes apparent: the ordinary perturbative method for collective variables η and η∗ [10] is
involved in the method of construction of the TDHF theory on the affine Kac–Moody algebra if
we restrict ourselves to ŝun. When η and η∗ are represented as η = √

� eiϕ and η∗ = √
� e−iϕ ,

we can always express γ (η, η∗) = ∑
r,s∈Z

γ̄r,sη
∗rηs = ∑

r γrz
r on the Lie algebra if we put

z = eiϕ . This means that the infinite-dimensional Lie algebra in the SCF theory is introduced
in a natural way and is useful to study various motions of fermion many-body systems.

4. Summary and concluding remarks

The formal RPA equation has been provided as a tool for truncating a collective submanifold
with only one normal mode out of an infinite-dimensional Grassmannian. We have given a
simple geometrical interpretation for the formal RPA equation. The collective submanifold is
interpreted as a rotator on a curved surface in the infinite-dimensional Grassmannian. In F∞,
to study motions of finite fermion systems, it is manifestly natural and useful to introduce the
infinite-dimensional Lie algebra arising from the anti-commutation relation between fermions.
In order to discuss the relation between TDHF theory and soliton theory, we have given
expressions for TDHF theory on the τ -functional space along soliton theory. From the loop
group viewpoint and with a clearer physical picture, we have proposed a method of description
of particle and collective motions in SCF theory on F∞ in relation to an iso-spectral equation
in soliton theory. Then, SCF theory on F∞ may be regarded as soliton theory in the sense
that it is based on the infinite-dimensional Grassmannian and may describe dynamics on an
infinite set of real fermion-harmonic oscillators. On the other hand, soliton theory describes
dynamics on the complex fermion-harmonic oscillators. It is one of the most challenging
problems to extend the real space ŝun to the complex space ŝln in TDHF theory on F∞
together with removal of the restriction |z| = 1. Concerning the construction of soliton theory
on multi-dimensional space [13, 14], we have an interesting future problem: to extend the
Plücker relation (Hirota’s form) with only one circle to the case of multi-circles such that SCF
method on F∞ can describe the dynamics of fermion systems in terms of multi-RPA bosons.
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Appendix A. Reconstruction of the p–h subgroup on F∞

According to the particle–hole (p–h) formalism, we consider reconstruction of the TDHF
equation with an n almost periodic sequence on an infinite-dimensional Fock space. We call
unoccupied and occupied states of the infinite-dimensional fermions for the highest weight
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vector |m〉, particles and holes, respectively,

particle state: ψi, ψj , . . . ;ψ∗
i , ψ∗

j , . . . i = nr + α,

(
r = 0, α = m + 1, . . . , n

r > 0, α = 1, . . . , n

)
hole state: ψa,ψb, . . . ;ψ∗

a , ψ∗
b , . . . a = nr + α.

(
r = 0, α = 1, . . . , m

r < 0, α = 1, . . . , n

)
 (A.1)

The particle pair:ψiψ
∗
j :and the hole one:ψaψ

∗
b :are closed under the Lie multiplication as

[: ψiψ
∗
j :, : ψkψ

∗
l :] = δjk : ψiψ

∗
l : −δil : ψkψ

∗
j :,

[: ψaψ
∗
b :, : ψcψ

∗
d :] = δbc : ψaψ

∗
d : −δab : ψcψ

∗
b : −δadδcb(b � 0).

}
(A.2)

We decompose the generator of ŝun (3.1) into two components each of which unchanges and
changes the number of particles and holes, respectively, in the following forms:

Xγ ′ = ζia : ψiψ
∗
a : −ζ ∗

ia : ψaψ
∗
i : +C

′, Xγ ′′ = η̄ij : ψiψ
∗
j : +ηab : ψaψ

∗
b : +C

′′, (A.3)

ζ =



ζ
J,n
−N · · · ζ

J,n
−2 ζ

J,n
−1 ζ

J,I
0

ζ
n,n
−N ζ

n,n
−2 ζ

n,I
−1

. . .
... ζ

n,I
−2

ζ
n,n
−N

...

ζ
n,I
−N


, Tr(ζr) = 0, (A.4)

η =



. . .
. . .

η
n,n
0 · · · · · · · · · η

n,n
N

!
...

. . .
... η

n,I
N

...
. . .

...
...

. . .
... η

n,n
0 η

n,n
1

...

η
n,n
−N · · · · · · η

n,n
−1 η

n,n
0 η

n,I
1

η
I,n
−N · · · · · · η

I,n
−1 η

I,I
0


, η̄ =



η̄
J,J
0 η̄

J,n
1 · · · · · · η̄

J,n
N

η̄
n,J
−1 η̄

n,n
0 · · · · · · · · · η̄

n,n
N

...
...

. . .
...

. . .

...
...

. . .
...

η̄
n,J
−N

...
. . .

...

η̄
n,n
−N · · · · · · · · · η̄

n,n
0

. . .
. . .


,

(A.5)

where both C
′ and C

′′ are pure imaginary and Tr(ηr) = Tr(η̄r ) = 0. Indices I and J run
1, . . . , m and m + 1, . . . , n. Any matrices MI,J

r are (I × J )-dimensional entries in any Mr .
By the same way as the derivation of equation (3.4), we obtain

eXγ ′′ ψa e−Xγ ′′ = ψbŵba, eXγ ′′ ψi e−Xγ ′′ = ψj ˆ̄wij , (A.6)

where ŵ = (ŵab) and ˆ̄w = ( ˆ̄wij ) are infinite-dimensional matrices on the hole and particle
space but have not a periodic sequence with period n as discussed in section 3. The action of
eXγ ′′ for |m〉 leaves |m〉 invariant under the phase equivalence relation

eXγ ′′ |m〉 = eiC′′
det ŵ|m〉 = eiδ|m〉, δ

d=
m∑

a=1

(η0)aa + C
′′. (A.7)

Consider the ph-type generator Xγ ′ . Following the appendix A of [5], regarding ζ (A.4)
as an embedded form into a (nN + J ) × (nN + I )-dimensional matrix, we obtain

eXγ ′ ψa e−Xγ ′ = ψbĈ(ζ )ba + ψj Ŝ(ζ )ja, eXγ ′ ψi e−Xγ ′ = ψj
ˆ̃C(ζ )ji − ψbŜ

†(ζ )bi . (A.8)
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The Ŝ(ζ ), Ĉ(ζ ) and ˆ̃C(ζ ) are (nN +J )×(nN +I )-, (nN +I )×(nN +I )- and (nN +J )×(nN +J )-
dimensional triangular matrix functions defined as

Ŝ(ζ ) = ∑∞
k=0(−1)k

1

(2k + 1)!
ζ(ζ †ζ )k,

Ĉ(ζ ) = InN+I +
∑∞

k=1(−1)k
1

(2k)!
(ζ †ζ )k = Ĉ†(ζ ),

ˆ̃C(ζ ) = InN+J +
∑∞

k=1(−1)k
1

(2k)!
(ζ ζ †)k = ˆ̃C†(ζ ),


(A.9)

where INn+I is the unit matrix of (nN + I )-dimension. Since ζ †ζ and ζ ζ † are the positive
Hermitian matrices, their matrices have properties analogous to the usual triangular ones

Ĉ(ζ )2 + Ŝ†(ζ )Ŝ(ζ )=InN+I ,
ˆ̃C(ζ )2 + Ŝ(ζ )Ŝ†(ζ )=InN+J , Ŝ(ζ )Ĉ(ζ )= ˆ̃C(ζ )Ŝ(ζ ).

(A.10)

Using a {(2nN + I + J ) × (2nN + I + J )}-dimensional matrix ĝsub(ζ ), we define an ŝunĝ(ζ )

ĝ(ζ ) =



. . .

In

ĝsub(ζ )

In

. . .


, ĝsub(ζ ) =

[
Ĉ(ζ ) −Ŝ†(ζ )

Ŝ(ζ ) ˆ̃C(ζ )

]
. (A.11)

Here, for the ĝ(ζ ) we use notation below

ĝnr+α,ns+β(ζ ) =
{
ĝsub

nr+α,ns+β(ζ ), |r| and |s| � N

δrsδαβ, otherwise
(A.12)

together with its Hermitian conjugate where ĝ(ζ )ĝ†(ζ ) = ĝ†(ζ )ĝ(ζ ) = Î . Thus, the ĝ(ζ ) is
an exact ŝun matrix and

ĝsub
nr+α,ns+β(ζ ) = {gs−r (r, s; ζ )}αβ, (A.13)

together with the same relation for ĝ
sub†
nr+α,ns+β(ζ ) and ĝsub(ζ )ĝsub†(ζ ) = ĝsub†(ζ )ĝsub(ζ ) =

I(2nN+I+J ). Then, the canonical transformation (A.8) and its Hermitian conjugation are recast,
respectively, as

ψnr+α{ĝ(ζ )} = U{ĝ(ζ )}ψnr+αU−1{ĝ(ζ )} =
∑
s∈Z

ψns+β ĝns+β,nr+α(ζ )

=
{∑N

s=−N
ψns+β ĝsub

ns+β,nr+α(ζ ), |r| � N

ψnr+α, otherwise
(A.14)

together with its Hermitian conjugate. If a constraint on ĝsub(ζ ) via the Lie elements ζ

is a form of (A.4), its structure can be determined up to the phase of subgroup orbit,
U{ĝ(ζ )ĝ(w)}|m〉[=U{ĝ(ζ )} eiδ|m〉].

Appendix B. Embedding of SCF Hamiltonian into F∞

We will embed canonical transformation into F∞. In the case of g̃ln, using γ
†
r = −γ−r

we have a representation for algebra τ(γ (z)) and group g̃
d= exp[τ(γ (z))] with a unitary
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condition g̃g̃† = g̃†g̃ = I . In the conventional picture of SCF theory, the corresponding
matrix g(z) = eγ (z) satisfies

g(z)g†(z) =
∑
r,s∈Z

grz
rg†

s z
−s =

∑
k,s∈Z

gs+kg
†
s z

k = δk,0 · In. (B.1)

This means
∑

s∈Z
gsg

†
s = In and

∑
s∈Z

gs+kg
†
s = 0(k �= 0). The corresponding representation

for γ (z)(= −γ †(z)) is given as

τ {γ (z)} =
∑

r,s∈Zα,β=1,...,n

(γr)αβψn(s−r)+αψ∗
ns+β . (B.2)

Defining �r ≡ (ψnr+1, ψnr+2, . . . , ψnr+n), canonical transformations on F∞ are given by

{. . . , �−1(g̃), �0(g̃), �1(g̃), . . .} = {. . . , �−1, �0, �1, . . .} g̃, (B.3)

and

ψnr+α(g̃) = U(g̃)ψnr+αU(g̃)−1 =
∑
s∈Z

n∑
β=1

ψn(r−s)+β(gs)βα, (B.4)

together with its Hermitian conjugate. On the other hand, in the conventional picture of SCF,
the corresponding creation operator is expressed as

c†α{g(z)} = U{g(z)}c†αU−1{g(z)} =
n∑

β=1

c
†
βgβα(z) =

∑
s∈Z

n∑
β=1

c
†
βzs(gs)βα, (B.5)

together with its Hermitian conjugate. Then, multiplying z−r and zr to the above equations,
we get

z−r · c†α{g(z)} = ∑
s∈Z

z−(r−s)c
†
β · (gs)βα,

cα{g(z)} · zr = ∑
s∈Z

cβz(r−s) · (gs)
∗
βα.

}
(B.6)

Putting z−rc†α{g(z)} = ψnr+α(g̃) and z−rc†α = ψnr+α , we get the relation (B.4).
We embed the density matrix Wαβ(g) = ∑m

γ=1 gαγ (g†)γβ into F∞ and realize it as follows:

Wαβ{g(z)} = ∑m
γ=1

∑
r,s∈Z

(gr)αγ

(
g
†
s

)
γβ

zr−s = ∑
k∈Z

(Wk)αβzk(r − s = k),

(Wk)αβ = ∑m
γ=1

∑
s∈Z

(gs+k)αγ

(
g
†
s

)
γβ

= ∑m
γ=1

∑
r∈Z

(gr)αγ

(
g
†
r−k

)
γβ

.

 (B.7)

In F∞, we define the density matrix as W
f

nr+α,ns+β

d= 〈m|U †(g̃)ψns+βψ∗
nr+αU(g̃)|m〉 where the

reference and perfect vacuums are defined in section 3. Using the canonical transformation
(B.4), the density matrix transforms to

W
f

nr+α,ns+β =
∑
α′,β ′

∑
r ′,s ′

(gr ′)αα′
(
g
†
s ′
)
β ′β〈m|ψn(s−s ′)+β ′ψ∗

n(r−r ′)+α′ |m〉. (B.8)

Finally, we embed the usual SCF Hamiltonian HHF[W ] into F∞ as

HHF[W ] =
∑
k∈Z

{hαβδk,0 + [αβ|γ δ](Wk)δγ }zkc
†
βcα, (B.9)

and

τ(HHF[W ]) =
∑
k∈Z

∑
s∈Z

{hαβδk,0 + [αβ|δγ ](Wk)δγ }ψn(s−k)+βψ∗
ns+α. (B.10)
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